Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials.

نویسندگان

  • A Ikeda
  • S Yazawa
  • T Kunieda
  • S Ohara
  • K Terada
  • N Mikuni
  • T Nagamine
  • W Taki
  • J Kimura
  • H Shibasaki
چکیده

To clarify the functional role of human pre-supplementary motor area (pre-SMA) in 'cognitive' motor control as compared with other non-primary motor cortices (SMA-proper and lateral premotor areas) and prefrontal area, we recorded epicortical field potentials by using subdural electrodes in five epileptic patients during presurgical evaluation, whose pre-SMA, SMA-proper, prefrontal and lateral premotor areas were defined by electric cortical stimulation and recent anatomical orientations according to the bicommissural plane and callosal grid system. An S1-Go/NoGo choice and delayed reaction task (S1-choice paradigm) and a warned choice Go/NoGo reaction task (S2-choice paradigm) with inter-stimulus intervals of 2 s were employed. The results showed (i) transient potentials with onset and peak latencies of about 200 and 600 ms, respectively, after S1 in the S1-choice paradigm mainly at pre-SMA and to a lesser degree at the prefrontal and lateral premotor areas, but not in the S2-choice paradigm. At SMA-proper, a similar but much smaller potential was seen after S1 in both S1- and S2-choice paradigms and (ii) slow sustained potentials between S1 and S2 in both S1- and S2-choice paradigms in all of the non-primary motor areas investigated (pre-SMA, SMA-proper and lateral premotor areas) and prefrontal area. It is concluded that pre-SMA plays a more important role in cognitive motor control which involves sensory discrimination and decision making or motor selection for the action after stimuli, whereas SMA-proper is one of the main generators of Bereitschaftspotential preceding self-paced, voluntary movements. In the more general anticipation of and attention to the forthcoming stimuli, non-primary motor cortices including pre-SMA, SMA-proper and lateral premotor area, and the prefrontal area are commonly involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortical activities associated with voluntary movements and involuntary movements.

Recent advance in non-invasive techniques including electrophysiology and functional neuroimaging has enabled investigation of control mechanism of voluntary movements and pathophysiology of involuntary movements in human. Epicortical recording with subdural electrodes in epilepsy patients complemented the findings obtained by the non-invasive techniques. Before self-initiated simple movement, ...

متن کامل

Role of primary sensorimotor cortices in generating inhibitory motor response in humans.

To clarify the mechanism by which inhibitory motor responses such as cortical negative myoclonus are generated in humans, three patients with medically intractable partial epilepsy (two with frontal lobe epilepsy and one with parietal lobe epilepsy) were studied by means of direct cortical stimulation with a single electric pulse through subdural electrodes. All underwent chronic long-term vide...

متن کامل

What have We Learned from “Perturbing” the Human Cortical Motor System with Transcranial Magnetic Stimulation?

The purpose of this paper is twofold. First, we will review different approaches that one can use with transcranial magnetic stimulation (TMS) to study both its effects on motor behavior and on neural connections in the human brain. Second, we will present evidence obtained in TMS-based studies showing that the dorsal premotor area (PMd), the ventral premotor area (PMv), the supplementary motor...

متن کامل

Pre-SMA actively engages in conflict processing in human: a combined study of epicortical ERPs and direct cortical stimulation.

Previous non-invasive studies have proposed that the deeply seated region of the medial frontal cortex engages in conflict processing in humans, but its core region has remained to be elucidated. By means of direct cortical stimulation, which excels other techniques in temporal and spatial resolutions and in the capacity of producing transient, functional impairment even in the deeply located c...

متن کامل

Human eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials.

We studied the generator location of premovement subcomponents of movement-related cortical potentials (MRCPs) [Bereitschaftspotential (BP), negative slope (NS') and motor potential (MP)] associated with voluntary, self-paced horizontal saccade in the human frontal lobe. Self-paced horizontal saccade, wrist (or middle finger) extension and foot dorsiflexion were employed in 10 patients (lateral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 122 ( Pt 5)  شماره 

صفحات  -

تاریخ انتشار 1999